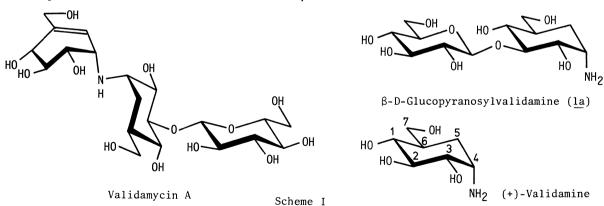
SYNTHESIS OF  $\beta$ -D-GLUCOPYRANOSYLVALIDAMINE: 2-O- $\beta$ -D-GLUCOPYRANOSYL-1L-(1,3,4/2,6)-4-AMINO-6-HYDROXYMETHYL-1,2,3-CYCLOHEXANETRIOL<sup>1)</sup>


Seiichiro OGAWA, Yasuhito SHIBATA, Noritaka CHIDA, and Tetsuo SUAMI

Department of Applied Chemistry, Faculty of Engineering,

Keio University, Hiyoshi, Yokohama 223

 $\beta$ -D-Glucopyranosylvalidamine ( $\underline{1a}$ ), the structure of which was assigned to the degradation product of validamycin A, was synthesized by condensation of a protected validamine ( $\underline{8}$ ) with acetobromoglucose, followed by deblocking. Unexpectedly,  $\underline{1a}$  was found not to be identical with an authentic sample derived from the antibiotic.

Validamycin A is a main component of the validamycin complex, which was isolated by Iwasa and his coworkers<sup>2)</sup> in 1970 from the broth of Streptomyces hygroscopicus var. limoneus. The structure was assigned by Horii and Kameda<sup>3)</sup> on the basis primarily of degradative studies (Scheme I). Thus, the hydrogenolysis of validamycin A produces  $\beta$ -D-glucopyranosylvalidamine (1a), validatol, and deoxyvalidatol.<sup>4)</sup> The structure of 1a was formulated as 2-0- $\beta$ -D-glucopyranosyl-1L-(1,3,4/2,6)-4-amino-6-hydroxymethyl-1,2,3-cyclohexanetriol, based on the results of the periodate oxidation of its N-acetyl derivative.<sup>3)</sup>



In the present communication, as a part of study directed toward the total synthesis of validamycin A and its related substances, the synthesis of <u>la</u> was carried out by condensation of a properly protected DL-validamine with acetobromo-

R0 
$$\frac{1}{10}$$
  $\frac{1}{10}$   $\frac{1}{1$ 

Scheme II. Synthesis of Protected Validamine
(All the formulas depict only one of the respective racemates)

Ac0 
$$Ac0$$
  $OAc$   $OAC$ 

Scheme III. Synthesis of  $\beta$ -D-Glucopyranosylvalidamine ( $\underline{1a}$ ) and Its Diastereomer ( $\underline{1b}$ ) glucose. The two diastereomeric  $\beta$ -D-glucopyranosides  $\underline{1a}$  and  $\underline{1b}$  thus obtained were hydrolyzed to give optically active validamines, which also constituted an optical resolution of racemic validamine.

Hydrolysis of penta-N,O-acety1-DL-(1,3,4/2,6)-4-amino-6-hydroxymethy1-1,2,3-cyclohexanetriol (validamine)  $(\underline{2})^6$ ) with boiling 6M hydrochloric acid gave the hydrochloride  $(\underline{3})$  as a syrup in quantitative yield. Treatment of  $\underline{3}$  with benzyloxy-carbonyl chloride in an alkaline solution gave crystalline N-benzyloxycarbonyl derivative  $(\underline{4})$ , mp 148-150°C, which was further characterized as the tetra-O-acety1 derivative  $(\underline{5})$ . Compound  $\underline{4}$  was then converted into the N,O-carbonyl derivative  $(\underline{6})$ , mp 162-164°C, under the influence of 10% aqueous sodium hydroxide. The

structure of  $\underline{6}$  was confirmed by the  $^1$ H NMR spectrum of its tri-0-acetyl derivative  $(\underline{7})$ , mp 133-134°C. Isopropylidenation of  $\underline{6}$  with 2,2-dimethoxypropane in N,N-dimethylformamide (DMF) in the presence of p-toluenesulfonic acid gave the 1,7-0-isopropylidene derivative  $(\underline{8})$ , mp 243-244°C, in 79% yield. The structure was supported by the  $^1$ H NMR spectra of the corresponding 0-acetyl  $(\underline{9})$ , di-N,0-acetyl  $(\underline{10})$ , and di-N,0-methyl derivatives  $(\underline{11})$ . Removal of the isopropylidene group of  $\underline{11}$ , followed by acetylation, gave 1,7-di-0-acetyl-3,4-N,0-carbonyl-2,4-di-N,0-methyl-DL-(1,3,4/2,6)-4-amino-6-hydroxymethyl-1,2,3-cyclohexanetriol  $(\underline{12})$ , mp 108-110°C, whose  $^1$ H NMR spectrum was fully consistent with the assigned structure. Thus, there appeared two coupled doublets of doublets (J = 6 and 8 Hz) due to H-2 and H-3 at  $\delta$  3.36 and 4.50, respectively. Therefore,  $\underline{8}$  was shown to be suitable for the synthesis of  $\underline{1a}$ .

Condensation of 8 with 2,3,4,6-tetra-O-acety1-\alpha-D-glucopyranosy1 bromide was conducted in a mixture of benzene and dioxane (2 : 1, v/v) in the presence of mercuric(II) cyanide and anhydrous calcium sulfate at 65°C for a week. As had been expected, formation of two new components was observed and they were clearly separated by chromatography on silica gel with 2-butanone-toluene (3 : 8, v/v) as an eluent, giving the protected  $\beta$ -D-glucopyranosides ( $\underline{13a}$ ),  $[\alpha]_D$  +77.8°, and ( $\underline{13b}$ ),  $\left[\alpha\right]_{\mbox{\scriptsize D}}$  -30.4°, as a syrup in 47 and 50% yields, respectively. They were shown to have four acetoxyl, one carbonyl, and one isopropylidene groups by the IR and  $^{1}$ H NMR spectra, and their analytical data also supported the assigned structures. The  $\beta$ -configurations were proposed by the optical rotations and by the conditions employed for the condensation reaction. Treatment of  $\underline{13a}$  and  $\underline{13b}$  with 80% aqueous acetic acid at ambient temperature gave the corresponding dihydroxy compounds (14a), mp 180-182°C,  $[\alpha]_D$  +73.4°, and  $(\underline{14b})$ , mp 216-219°C,  $[\alpha]_D$  -62.8°, in 44 and 76% yields, respectively. The presence of two hydroxyl groups at C-1 and C-7 was verified by their exclusive transformation into 1,7-0-benzylidene derivatives (15a), mp 240-242°C,  $\left[\alpha\right]_D$  +56°, and  $\left(\underline{15b}\right)$ , mp 192-194°C,  $\left[\alpha\right]_D$  -74°, in 74 and 66% yields, respectively, by treatment with 1,1-dimethoxy-1-phenylmethane in DMF in the presence of acid catalyst. The <sup>1</sup>H NMR spectra of 15a and 15b showed one-proton sharp singlets at  $\delta$  5.56 and 5.55, respectively, attributable to the benzylic proton. Removal of the acetyl and carbonyl groups was then carried out by treatment with boiling 10% aqueous barium hydroxide. The free bases (1a) and (1b) thus obtained as a homogeneous syrup were further characterized as the corresponding octa-N,O-acety1 derivatives ( $\underline{16a}$ ), [ $\alpha$ ]  $_D$  +9.5°, and ( $\underline{16b}$ ), [ $\alpha$ ]  $_D$  -41.7°. Acid

hydrolysis of  $\underline{1a}$  with boiling 6M hydrochloric acid gave D-glucose and validamine hydrochloride, detected by TLC on cellulose. They were acetylated in the usual way to give penta-0-acetyl-D-glucopyranose and penta-N,0-acetyl-(+)-validamine ( $\underline{2}$ ),  $[\alpha]_D$  +60.2°, mp 146-148°C. The latter compound was identified with an authentic sample,  $[\alpha]_D$  +61.6°, mp 147-149°C, prepared from (+)-validamine hydrochloride,  $^{8,9}$ ) by comparison of their IR (CHCl $_3$ ) and  $^1$ H NMR spectra, and chromatographic behavior. Penta-N,0-acetyl-(-)-validamine ( $\underline{2}$ ),  $[\alpha]_D$  -59.8°, mp 147-149°C, was similarly obtained from  $\underline{1b}$  and identified with an authentic sample except for an optical rotation being opposite in sign. Therefore, the optical resolution of racemic validamine was accomplished by the above experiments.

Now,  $\underline{1a}$  should be the  $\beta$ -D-glucopyranoside, the structure of which was formerly assigned to the compound derived from validamycin A. Attempts were then made to compare  $\underline{16a}$  with an authentic sample,  $\underline{8}$  however, unexpectedly, they were found to be completely different from each other, on the basis of  $\underline{^1}$ H and  $\underline{^{13}}$ C NMR spectra, and chromatographic behavior. Consequently, the present results were obviously incompatible with those suggested by Horii and Kameda.  $\underline{^{2}}$  We are on the way to get plausible evidence to determine the structure of the " $\beta$ -D-glucopyranosylvalidamine."

## References and Notes

- 1) Presented in part at The ACS/CSJ Chemical Congress: 1979, Honolulu, Hawaii, April 1979, Abstr. CARB 89.
- 2) T. Iwasa, H. Yamamoto, and M. Shibata, J. Antibiot., 23, 595 (1970).
- 3) S. Horii and Y. Kameda, J. Chem. Soc., Chem. Commun., 1972, 747.
- 4) S. Horii, T. Iwasa, and Y. Kameda, J. Antibiot., 24, 57 (1971).
- 5) The nomenclature and numbering of cyclitols used in this paper follow IUPAC and IUB tentative rules for cyclitol nomenclature [J. Biol. Chem.,  $\underline{243}$ , 5809 (1968)].
- 6) S. Ogawa, K. Nakamoto, M. Takahara, Y. Tanno, N. Chida, and T. Suami, Bull. Chem. Soc. Jpn., <u>52</u>, 1174 (1979), and references are cited in.
- 7) All the new compounds whose melting points and/or optical rotations were reported gave satisfactory analytical data. Unless otherwise stated, optical rotations were measured in chloroform at  $20^{\circ}$ C (c = ca. 1).
- 8) Authentic samples of (+)-validamine hydrochloride and  $\beta$ -D-glucopyranosyl-validamine were kindly supplied by Dr. Satoshi Horii.
- 9) The absolute configuration of (+)-validamine was established as depicted in the Scheme I by X-ray spectroscopic analysis of its hydrobromide [K. Kamiya, Y. Wada, S. Horii, and M. Nishikawa, J. Antibiot., 24, 317 (1971)].